
Linking evidence-based medicine therapeutic summary measures to 

clinical decision analysis 
 
 
 
Benjamin Djulbegovic*,  Iztok Hozo#,  Gary H. Lyman$ 
 
 
Divisions of Bone Marrow Transplantation*  
and Medical Oncology/Hematology$ 

H. Lee Moffitt Cancer Center and Research Institute  
at the University of South Florida, Tampa, FL, USA 
 
Department of Mathematics# 
Indiana University Northwest 
Gary, IN, USA 
 
 
 
 
Correspondence:  
 
Dr. Iztok Hozo 
Associate Professor of Mathematics 
Department of Mathematics 
Indiana University Northwest 
3400 Broadway 
Gary, IN 46408 
phone:  (219) 980-6980 
fax:  (219) 981-4247 
e-mail: ihozo@iunhaw1.iun.indiana.edu 
www:  http://www.math.iun.indiana.edu 
 
 
 
 
 
 



 
 2 

 
Abstract 

Objective:  Evidence-based medicine (EBM) seeks to improve clinical practice 

by evaluating the quality of clinical evidence and ensuring that only the “best” evidence 

from clinical research is used in the management of individual patients. EBM has 

contributed to our understanding of the meaning of the benefit and harm of treatment as 

reported in the literature and it is often promoted as an aid to clinical decision making. 

However, EBM therapeutic summary measures reflect only a single dimension of 

clinical decision making. The purpose of this work is to show how EBM therapeutic 

summary measures can be effectively incorporated into medical decision making. 

Design: The effective application of the therapeutic summary measures 

advocated by EBM requires their integration into the framework of clinical decision 

analysis. Clinical decision analysis involves not only the identification and specification 

of the probabilities of clinical events but also the assessment of their relative values or 

utilities. We present here several analytical models for the integration of EBM 

therapeutic summary measures within the framework of clinical decision analysis. 

Main results: As expected, our analysis demonstrated that treatment should 

never be administered if its harm is greater than its efficacy generally expressed as 

relative risk reduction.  Likewise, a diagnostic test should never be ordered if the 

therapeutic harm is greater than its efficacy. Intervention is always favored if the number 

needed to treat to avoid one adverse outcome (NNT) is smaller than the number 

needed to treat to harm one individual (NNH). When faced with a choice between two 

therapeutic options the action threshold above which an intervention is favored can be 
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expressed in terms of the harm inflicted (H) as H*NNT or NNT/NNH. If a patient's 

preferences are taken into account as relative value judgements (RV) of adverse events 

relative to that of therapeutic events, the action threshold is defined as NNT*(RV/NNH). 

Conclusions: In the setting of clinical decision making, EBM summary measures 

derived from population studies can be effectively used to define diagnostic and 

therapeutic action thresholds that may help in the management of individual patients. 

Key Words: evidence-based medicine, decision analysis 
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 Introduction 

 Evidence-based medicine (EBM) has emerged as a powerful problem-oriented 

approach to the practice of medicine that seeks to improve patient care by considering 

the quality of clinical evidence (1). In the category of therapeutics, the main focus of 

EBM is to evaluate treatment effect usually expressed as one of several therapeutic 

summary measures (2). EBM has been advanced as an important tool in clinical 

decision making which may aid physicians in selecting one treatment alternative over 

another (3, 4). Recommendations are often made concerning the preferred 

management strategy based on a comparison of the relative benefit and harm 

associated with competing treatment alternatives (5, 6). However, it is unclear how this 

understanding of treatment benefit and harm should actually relate to a specific clinical 

decision. For example, should we choose treatment that is more efficacious or one that 

is less harmful? What is the minimal therapeutic benefit at which a treatment is still 

worth administering? What is the maximal acceptable harm at which a treatment is still 

considered worthwhile? Meaningful answers to these questions as well as the 

application of EBM to everyday clinical practice can be achieved by linking therapeutic 

summary measures to the methods of formal decision analysis (7, 8). 

 Evidence-based therapeutic summary measures 

 Several summary measures have been introduced to express treatment effect in 

terms of either therapeutic benefit or harm (2). These summary measures relate to the 

morbidity and mortality of disease and the toxicity of treatment. In general, treatment 

can exert a beneficial effect by either reducing the risk of a poor outcome or by 
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increasing the chance of good outcome (2). Similarly, treatment can exert a harmful 

effect by either increasing the risk of a poor outcome or reducing the chance of a good 

outcome. For the purpose of brevity we will only concentrate on the most popular 

measures of therapeutic benefit and harm. 

 Popular indices of therapeutic benefit include: a) the treatment effect generally 

expressed as either the absolute or relative change in the rate of events and b) the 

number of patients who need to be treated to prevent one bad outcome or attain one 

good outcome (NNT) (5, 9). Treatment effect is commonly expressed as either the 

absolute risk difference (ARD) between event rates in the two groups, i.e., ARD = Risk1 

– Risk2 , or as the proportional relative risk reduction (RRR) in event rates, i.e., RRR = 

(Risk1 – Risk2) / Risk1 = 1 – Risk2 / Risk1 (2, 5). Alternatively, NNT represents the 

reciprocal of the difference in event rates between the treatment alternatives such that 

NNT=1 / (Risk1 – Risk2) = 1 / ARD (5, 9).  

 The harmful effects of treatment can be presented in a similar way. The common 

way to express this is to assess the rates of adverse effects due to treatment or to 

calculate the NNH (the number of patients who must be treated for one to experience a 

harmful event). This can be expressed as absolute difference between two harms 

(AHD) as NNH = 1 / (Harm1 – Harm2)=1/AHD (2, 5). 

 One should note that these measures of benefit and harm are population-based 

and often derived from randomized controlled trials (10, 11). However, these population-

derived therapeutic measures have been increasingly advocated in medical decision 

making in individual patients (5, 12). Failure to relate these population-based evidence-
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based therapeutic measures to the care of individual patients has been one of the major 

criticisms of the EBM movement (10, 11). In this article, we show that it is possible to 

relate EBM therapeutic summary measures to practical action thresholds in clinical 

decision making for individual patients.  By practical action threshold we refer to a 

clinical situation when two different management strategies have the same potential 

value, the decision often described as a "toss-up" (13) or the point of indifference with 

regard to a choice between available management actions (14). In this way, the 

threshold becomes a guide for action- when the threshold is crossed, the values of 

management strategies change helping the decision maker to select one strategy over 

another. 

 Decision Analysis 

 The true challenge of clinical medicine is that of effective decision making under 

conditions of considerable uncertainty. Common uncertainties encountered include the 

diagnosis, the benefit of treatment as well as the harm of treatment. Formal decision 

analysis represents an explicit, quantitative method of clinical decision making that 

involves the distinction between the probabilities of events and their relative values (15, 

16). The value associated with each clinical outcome can be expressed in different units 

such as length of life, morbidity or mortality rates, absence of pain, cost, or the strength 

of individual or societal preference for an outcome often expressed in terms of utilities 

(14-17). Note that we are using here a very broad definition for utilities associated with 

clinical outcomes in the manner proposed by Pauker and Kassirer (17) who followed its 

usage according to principles of classic decision analysis (15, 18). In medical literature, 
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it has became customary to equate the term "utility" with a measure of strength of the 

patient's preference for outcome (19). In this paper, the use of utilities may or may not 

include patients' preferences or judgement values toward a given clinical outcome (8). 

Indeed, we will show how outcomes expressed as morbidity or mortality can be 

integrated within a patient's value judgements to arrive at the optimal clinical decision. 

 In choosing between several competing clinical scenarios, decision theory holds 

that the optimal choice rests with the selection of the strategy associated with the 

optimal (greatest or smallest) expected value, calculated by averaging values across all 

possible outcomes, weighted by the corresponding probabilities (15, 16). Therefore, the 

preferred management strategy is the one associated with the optimal expected value 

of utility and is not directly dictated by the value of individual strategy outcomes.  

 
 
 

Health outcomes can be expressed using evidence-based therapeutic 

summary measures  

 As noted above, EBM therapeutic summary measures refer to the effects of 

treatment on morbidity or mortality (2). EBM measures of therapeutic benefit or harm, 

therefore, relate to the modification of outcome values or utilities (7) (see above and 

Appendix). Outcome values can also be expressed as the proportion of patients who 

are free from the consequences of disease or the harm of the treatment (14, 17, 20, 

21). The treatment is designed to modify the negative impact of disease on health 

status but often is associated with treatment-related harm as a trade-off. The preferred 

management strategy is the one with the greatest expected value, which depends on 
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the outcome value or utility as well as on the probability of each outcome.  

We utilize the example of Pauker and Kassirer (14, 17) and of Rigelman and 

Schroth (22) representing the measures of benefit and harm as affecting the outcomes 

or utilities. Alternatively (23) EBM summary therapeutic measures may be assumed to 

affect the probability of clinical event instead of its outcome. However, the model shown 

in the Appendix (7, 20, 24) yields the same results under both scenarios. Therefore, 

applications of our model, including any conclusions and recommendations, remain 

unchanged. 

 Integration of EBM within a decision analytic framework 

 As detailed above, in the setting of clinical uncertainty, treatment summary 

measures utilized in EBM cannot alone tell us if one treatment alternative is preferred 

over  another. Guyat et al (8) and Dowie (25, 26) have argued that the effective 

application of EBM requires integration within the framework of a decision analysis 

model. We have recently demonstrated that it is possible to link EBM measures of 

therapeutic efficacy to the framework of formal decision analysis both when comparing 

two treatments as well as when comparing treatment with observation (7, 20, 24). In so 

doing, we shift the focus from that of EBM measures of treatment efficacy to the more 

clinically relevant issue of the optimal choice among possible treatment alternatives. In 

addition to considering the measures of treatment effect, decision analysis allows us to 

address the trade-off that almost always exists between treatment benefit and harm 

whether measured in terms of mortality, morbidity or cost. While accurate measures of 

treatment efficacy are necessary to clinical decision making, they are not sufficient, as 
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they do not address the trade-off between benefit and harm essential for optimal patient 

care. Here we will illustrate the integration of EBM measures into clinical decision 

analysis providing important relationships between the summary measures of EBM and 

the trade-off inherent in clinical decision making.  

 We will consider decision-making in both the prophylactic/adjuvant and treatment 

settings, as well as in clinical situations when the diagnosis is certain, and when it is not. 

Finally, we will also address these issues in the setting of a diagnostic test. 

 Prophylactic/adjuvant setting 

 When comparing an intervention with no intervention, a direct link between EBM 

and decision analysis is clearly expressed in the equations outlined below (7, 20, 24).  If 

the net harm associated with treatment can be represented in the same units as the net 

benefit, the threshold probability of disease (pt) at which the expected value of 

treatment is exactly the same as the expected value of no treatment can be shown to be 

(17):  

   pt = Net Harm / (Net Benefit + Net Harm) 

The clinical setting of comparing an intervention with no intervention is shown in Figure 

1. If the harm associated with treatment is H and the event rate, e.g., mortality, without 

and with treatment is M and MRx respectively, then the absolute risk difference (ARD) 

and relative risk reduction (RRR), or efficacy (E) are given by:  

            ARD = M – MRx , and  

            RRR = E = (M – MRx) / M 
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   NNT = 1 / ARD 

The threshold probability of disease at  which we should be indifferent between 

treatment vs. no-treatment (Fig 1, Appendix) is shown to be(20, 24): 

  pt  = H / (E * M) = H / [M – MRx] = H/ [Srx-S]=H / ARD = H * NNT 

 

 This expression shows how different outcome data can be related to action 

threshold. That is, regardless whether data are expressed in terms of morbidity (M and 

Mrx, as defined above), survival (S and Srx represent disease-specific survival in those 

without and with treatment, respectively), absolute difference in outcomes (ARD) or 

NNT, we obtain the same threshold value. Note that our model (Appendix) refers to the 

measures of benefits as those related to the effect of the disease (with or without 

treatment) and to the measures of harm as those related to the treatment only. This 

understanding of benefit and harm corresponds to our usual clinical practice. However, 

the reader should be cautioned than when using survival data he/she should employ 

disease-specific survival data rather than overall survival, because overall survival may 

include not only effect of disease while patient is being treated, but also other causes of 

death. 

 It follows from the above equation that, if the probability that the patient has the 

disease is less than pt, then treatment is not indicated. If the probability is greater than 

pt, treatment should be given.  If we assume that a patient on the no-treatment arm is 

actually on placebo, as it is commonly the case in randomized trials, the above 
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relationship becomes: 

  pt  =(Hactive treatment - Hplacebo) * NNT=NNT/NNH 

 

Therefore, treatment should only be administered if we anticipated more good than 

harm, i.e., if NNT<NNH. One should also note that this relationship also holds for the 

situation where the diagnosis is certain. We should administer the treatment only when 

it satisfies conditions such that NNT<NNH, or NNT<1/H derived from relationships 

between measures of benefit and harm (24). Note that harm should be expressed as H 

only if we assume that alternative management (such as placebo, or no-treatment) of a 

patient without disease does not affect patient's health status at all, which in our 

notification was chosen to be equal to 1. If that assumption is not true, than difference in 

harm or NNH between two treatments should be used (see Appendix).  

 Such relationships allow physicians to tailor their treatment decisions to individual 

patients rather than to average patients from clinical trials (10) (8). Evidence can be 

suitably applied to the management of individual patients if used within a decision 

analytic framework (8). Clinical decisions can be assessed in the context of an individual 

patient most readily through a sensitivity analysis of the variables considered(20, 24) 

(addressed later in this paper). In this way we can test the stability of the action 

threshold based on changing assumptions about the evidence. 

Clinical example:  Kearon et al(27) recently reported a study in which they randomized 

patients who already completed a 3 month course of warfarin to determine if longer 

anticoagulation would be beneficial in the prevention of deep venous thrombosis (DVT) 
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recurrence. From this study, we found that the NNT for the prophylaxis of DVT 

recurrence is 4, i.e., 4 patients need to be treated with warfarin for 1 year in order to 

prevent one episode of DVT. The study concluded that a considerable risk of DVT 

recurrence exists beyond the typical 3 months of treatment with warfarin and that longer 

duration of anticoagulation might be necessary. However, the optimal duration of 

treatment needs to be interpreted in light of not only the benefit but also the harm of 

warfarin treatment.  

 While many would argue that the NNT of 4 represents a very effective therapy, 

this measure alone does not provide an answer to the question whether this treatment 

is better than the alternative management strategy of observation without active 

treatment. The crucial clinical question is: How good is one treatment strategy in 

comparison with another one when both benefit and harm are taken into consideration? 

To begin to address the clinical question whether to give warfarin or not, we note in the 

study by Kearon et al(27) that the annual risk of major bleeding was 3.8% (compared to 

zero in placebo arm) representing the NNH = 26. If we assume that the avoidance of 

DVT and bleeding complications represent approximately the same value to the patient, 

warfarin should be administered if the probability of DVT recurrence is greater than 15% 

(4/26). In this study, the recurrence rate for DVT was 27.4% per year suggesting that 

warfarin treatment should be continued beyond the initial 3 months of treatment in a 

typical patient (10) meeting the eligibility criteria described in the study by Kearon at al 

(27). 

 Now, let us consider a patient at increased risk for bleeding with continued 

warfarin use because of heavy alcohol intake.  Although such patients were excluded 
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from the clinical trial discussed above, it is possible to individualize treatment decision 

making by applying the above equations to the patient's specific circumstances. Using 

published data, we may assume that the risk for bleeding in the patient under 

consideration is increased at least by 2.7 fold (28, 29), i.e., NNH = 10 [1/(0.038*2.7)]. 

This translates into a new action threshold of .4 (NNT/NNH = 4/10). Thus, the risk for 

DVT should exceed 40% per year to justify continued administration of warfarin. The 

optimal duration of anticoagulation could very well be only a few months for this patient. 

 It is equally important to ask “What is the highest NNT at which treatment is still 

worth administering?” As noted above, the treatment should only be considered if  

NNT < NNH  (7, 20). We recommend that the NNT not be used without concomitant data 

on treatment harm. In the example above, warfarin should not be administered if the 

NNT > 26 (or in the case of the patient at increased therapeutic harm because of heavy 

alcohol intake, warfarin should not be used if the NNT >10).  At or above this NNT, the 

harm of treatment would always outweigh the benefit, assuming harms and benefits are 

valued equivalently.  

 This approach also presents an answer to a question in the recent article by 

Steiner (11): “For NNT > 1, what is the minimal therapeutic benefit at which treatment is 

worth administering?” In addressing the application of population-based therapeutic 

measures to the care of individual patients, Steiner lamented that since we cannot be 

sure who will benefit from treatment, “all you can say is that on the basis of best 

available evidence, everything possible is being done to prevent an adverse effect” (11). 

As shown here, treatment is worth considering if NNT<1/H or if NNT<NNH (20, 24).  

 On the other hand, the following question can be asked: “How much harm is 
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acceptable knowing the efficacy of treatment?”  

Clinical example: A recent meta-analysis of chemotherapy for early-stage breast cancer 

indicated that we would need to treat 56 women with lymph node-negative disease, 

aged 60-69 years, in order to prevent one breast cancer recurrence (30). Is this benefit 

worth the harm associated with chemotherapy? The above relationship reveals that 

treatment is justified only if the harm is <1/NNT, which is 1.8% in this case. An average 

mortality associated with conventional adjuvant chemotherapy in postmenopausal 

women is reported to be 0.43% but it may vary from 0 to greater than to 3.2% (31). 

While on average, benefit of adjuvant therapy outweigh its risk for this group of patients, 

it also appears that there are patients in whom the benefit of adjuvant chemotherapy for 

breast cancer is not worth the risk. It is the responsibility of the physician to individualize 

treatment risk for each patient and to provide recommendations based on both risk and 

benefit.  Sensitivity analyses varying EBM summary data obtained from population 

studies (24)may help examine how various co-morbid conditions and prognostic factors 

will affect decisions in the individual patient (10).  

 Clinicians often ask: “What happens if I don’t intervene?”  and  “If I intervene, will 

I do more good than harm?” The equations described above, e.g., pt = H/(E*M) in the 

prophylactic setting and Et = H / M in the therapeutic setting where p=1 provide a 

method to relate clinically relevant thresholds to knowledge concerning the three key 

parameters of medical decision making: a) the natural history of the disease (M), b) the 

harm inflicted by treatment (H) and c) the benefit (efficacy) of treatment (E). Note that 

for H > M * E, p becomes greater than 1. This confirms a traditional clinical principle: 

”Never administer treatment if its harm is greater than its efficacy ” and is 
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mathematically equivalent to the venerable Hippocratic principle “First, do no harm”(24).  

 Treatment Comparisons 

The clinical setting of comparing one intervention with another is a variation of 

the scenario discussed in the previous section (Figure 1). When one treatment is 

compared to another, the threshold probability reduces to the following equation 

(Appendix): 

  pt =  NNT*(H1 – H2) = NNT/NNH = (H1 – H2) / [M * ( E1 – E2)]  

      = (H1 – H2) / (MRx2 – MRx1) =  (H1 – H2) / (SRx1 – SRx2) 

  

In this formulation, if the probability of a disease is greater than pt, then treatment 1 

should be given while if the probability of a disease is less than the threshold probability, 

treatment 2 is favored. This equation stresses the importance of knowledge concerning 

the natural history of the disease along with the benefit and harm of competing 

treatment strategies. As in the previous model, we can perform sensitivity analysis to 

obtain further insight into how EBM summary measures affect our management 

choices. Note that in this formulation NNT=1 / (Mrx2-Mrx1) = 1 / (Srx1-Srx2) = 1 / ARD, 

and NNH = 1 / (H1 - H2) = 1 / AHD.  

 As discussed earlier, Srx refers to disease-specific survival. 

 Clinical example: Using currently available data on benefit and harm in the 

management of high-risk breast cancer, we have shown that in women with > 9 axillary 

lymph positive nodes, high-dose chemotherapy with stem cell rescue may be justified if 

the probability of a breast cancer relapse exceeds 29-40% at five years (20). However, 



 
 16 

the decision to use high-dose vs. conventional adjuvant chemotherapy was very 

sensitive to the efficacy data utilized, none of which were obtained from randomized 

controlled trials.  Under assumptions of low treatment efficacy for high-dose 

chemotherapy, we found that conventional adjuvant chemotherapy was equally 

attractive alternative (20). This analysis underscores the importance of reliable, high-

quality data in decision analysis, such are those collected in prospective randomized 

clinical trials. Many decisions will be data-sensitive, i.e., the better the data, the better 

the decision will be. In the case of breast cancer, efforts to obtain better data are 

currently under way. While this is, undoubtedly, an important and necessary legacy of 

EBM, it is insufficient for optimal medical decision making.  

 What is the minimal difference in efficacy between treatment 1 and treatment 2 at 

which treatment 1 is worth considering? If treatment 1 is more toxic, how much more 

efficacious should treatment 1 be than treatment 2 in order to offset its greater risk? 

These issues can be addressed by considering the following expressions derived from 

the threshold equations above (Appendix): Treatment 1 is favored if the following 

inequality holds(20):   

   SRx1 > SRx2 + (H1 – H2) 

or   E1 >E2 + (H1 – H2) / M 

  

As expressed mathematically in these equations, we should administer only the more 

effective treatment that would provide better disease-specific survival than the 

alternative therapy adjusted for the harm difference between two treatments options. 



 
 17 

 Clinical example: We considered these relationships in determining the minimal 

efficacy of high-dose chemotherapy in high-risk breast cancer (20). We found that for a 

mortality difference between high-dose and conventional adjuvant chemotherapy of 5% 

in breast cancer with more than 9 positive axillary lymph nodes, bone marrow 

transplantation can be justified only if its efficacy is at least 30% greater than 

conventional adjuvant chemotherapy (20). 

 

 

 Integration of patient's preferences into clinical decision making 

 So far, we have shown how "hard" data on benefit and harm can be related to 

treatment action thresholds. These calculations assume that patients value the 

outcomes associated with the disease and adverse effects of treatment equally. 

However, patients often express different value judgements or preferences toward the  

positive and negative consequences of alternative management strategies. The method 

we presented can readily accommodate patient preferences or value judgements into 

the decision making process. Guyat et al(8) have demonstrated that the patient's value 

the avoidance of disease events that treatment is designed to prevent and the 

avoidance of the adverse effects of treatment differently and this can be expressed as 

the relative value (RV): 

  Relative Value (RV)=(1-value of adverse event)/(1-value of disease event) 

  = value of avoiding treatment toxicity / value of avoiding disease outcome 

 When this definition of patient preferences is adopted within our model we obtain 
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the following relationships: 

  Pt = NNT * [RV * H] or RV * NNT / NNH 

  Et = RV * H / (p * M) or Et = RV * H / M if p = 1 

 

In the case of diagnostic certainty, i.e., p = 1,  treatment should be administered only if 

NNT <  NNH / RV, or if efficacy of treatment is greater than Et , as shown above. 

Clinical example: Ezekowitz and Levine (32) recently performed a comprehensive 

literature review attempting to summarize data on the benefit and risk of antithrombotic 

agents in the prevention of stroke in patients with atrial fibrillation. They found that in 

patients between 65 and 75 years age, with no other risk factors, the annual risk for 

stroke was 4.3%, 1.1% and 1.4% in those receiving placebo, warfarin and aspirin 

respectively (32). At the same time, they found that the frequency of major bleeding was 

1.2%, 1.0% and 1.0% annually for the warfarin, aspirin, and placebo groups, 

respectively (32). Does the benefit of treatment with warfarin or aspirin justify the  

potential harm (life-threatening bleeding)? 

 Applying the above formulas in the setting of diagnostic certainty (we know that 

the patient has atrial fibrillation), we find that if the choice was between warfarin or 

aspirin vs. no-treatment, the benefit overwhelmingly favors treatment (NNT=31 for 

warfarin vs. placebo, NNT=34 for aspirin vs. placebo; NNH=500 for warfarin vs. aspirin, 

and no net harm for aspirin vs. placebo according to the data presented by Ezekowitz 

and Levine (32)). If our decision was between warfarin and aspirin, we obtain that 

NNT=333 and NNH=∞, in favor of warfarin.  
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 However, this recommendation does not take into account patients' values 

toward increased life-threatening bleeding relative to the prevention of stroke. Guyat et 

al (8) reports that, on average, patients consider 1 stroke equivalent to 5 episodes of 

serious gastrointestinal bleeding. Using formula shown above, Guyat at al. computed 

the relative value (RV) of life-threatening bleeding vs. experiencing stroke as 0.744 (8). 

Incorporating this RV, we would choose warfarin for NNT < 672 (500/0.744). Since there 

was no difference in harms between warfarin and aspirin (NNH=∞), an additional 

consideration of patient values may help reinforce our decision to administer warfarin 

over aspirin. 

 Diagnostic Testing 

 When a diagnostic test is considered one of the clinical options, the question 

becomes whether to a) treat immediately, b) perform the test and base treatment on the 

test result, or c) continue observation without treatment or testing. The decision tree in 

figure 2 illustrates this clinical situation. Pauker and Kassirer (14) solved this decision 

tree to define two action thresholds, the testing threshold (ptt) and the treatment 

threshold (prx).  If the probability of the disease is larger than prx, the treatment should 

be administered without testing, if the probability of disease is smaller than ptt, we 

should continue observing the patient and if the probability of the disease is between 

the two thresholds, the test should be performed and the patient treated or observed 

based on the test result. 

 If benefit and harm are expressed as evidence-based therapeutic measures (Fig 

2), Pauker and Kassirer’s threshold formulas (14) can be written as(7, 24): 
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where S is test sensitivity, Sp is test specificity and Hte represents harm associated with 

diagnostic test. Examination of these formulas show that when the harm of treatment, 

Hrx, is larger than the benefit of treatment, E ⋅ M, the term S ⋅ (E ⋅ M – Hrx) is negative, 

indicating that a testing threshold, ptt, is not defined. This provides an intuitive corollary 

that a diagnostic test should never be ordered if the harm of treatment  is greater than 

or equal to its benefit. This important clinical axiom was not readily apparent from the 

original threshold model (14). In fact, ptt will be undefined unless the net benefit of 

treating those with a positive test, i.e., [S ⋅ (E ⋅ M – Hrx)], is greater than or equal to the 

harm of testing Hte. 

 The reader should note that the equations presented here assume that the 

diagnostic test is not perfect, that is, it is associated with certain false negative and false 

positive rate, as well as with certain harms (15). Of interest is to examine the behavior 

of these equations under assumption of expected value of perfect information, which is 

defined "as the difference between the averaged-out outcome value with a test and the 

averaged-out outcome value without a test when the test reveals the true disease state 

with certainty and it is assumed to have no risk"(15). That is, if we assume that the test 

is perfect, its sensitivity and specificity are equal to 1, and harm associated with its 

administration Hte=0. Under these circumstances all patients with positive test will have 

the disease, and all patients with negative test will not have the disease, and applying 
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the test will harm none. In other words, we will treat our patients only if we are 

absolutely certain that he/she has disease, and we will never order the test if the 

probability of disease is zero. Indeed, by solving the decision tree shown in Fig 2 under 

these assumptions, the treatment threshold (prx) is equal to one and the testing 

threshold (ptt) becomes equal to zero. 

Clinical example: Substantial disagreement exists concerning which patient 

should be treated with cholesterol lowering drugs in the primary prevention of coronary 

heart disease (CHD)(33, 34). The debate hinges on the accuracy of various methods to 

correctly predict who is at risk for CHD(34). The sensitivity and specificity of the various 

methods reported vary from 52% to 98% and from 37% to 96%, respectively(34). The 

efficacy of statins in the primary prevention of CHD is 30.5% at 5 years, and harm, 

expressed as the percentage of patients who had to discontinue medications during this 

five-year period was about 0.3%(35). Utilizing the above equations, the benefit of 

treatment is seen to outweigh its harm if the estimated risk of CHD is above 3.1% at 5 

years using Sheffield tables, 30% at 5 years using modified Sheffield tables and above 

23% at 5 years using criteria of the Joint Euro Task force to predict the risk of CHD (34). 

These dramatic differences in results reflects the large differences in the specificity of 

the various risk assessment methods (34). 

On the other hand, if we are interested in determining the risk of CHD at which a 

patient should be offered testing to assess his or her own CHD risk, the test threshold 

should be calculated. Using the above formula as well as the data cited above, testing 

should be offered to any patient judged to be at greater than 0.56%, 1.3%, or 4.5% risk 

for CHD at 5 years depending on the method used (34). Thus, this relatively simple 
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method can shed considerable light on such important health issues as testing and 

treating patients at risk for CHD(36). 

The reader should note that the same units should be used for benefit and harm 

in applying the equations presented here. In the above example we used morbidity data 

(non-fatal CHD and liver function abnormalities). However, if mortality data are used, 

action thresholds drop virtually to zero because of the low harm of statins. Since results 

using two different type of units (morbidity data, in which one can argue that prevention 

of myocardial infarction is not the same as liver function abnormalities vs. mortality data) 

produce dramatically different recommendations, the right course of action for any 

individual patient would be to elicit his or her preference values toward negative and 

positive consequences of using statins in prevention of CHD. Once the relative value 

judgements [RV] are elicited, they can be used in our formulas to calculate action 

thresholds. 

We should note here that the calculation of action thresholds help us determine 

the probability of the disease at which treatment benefit outweighs its risk or, in the case 

of diagnostic testing, at which the probability of the disease at which ordering the test 

would be the optimal course of action. Glasziou and Irwig (37) demonstrated that an 

individual patient's risk can be obtained from large inception cohort studies in which 

major risk factors were defined. In the CHD example, the individual risk of coronary 

heart disease can be obtained from Framingham's equation which calculates the risk of 

CHD based on gender and history of smoking , hypertension, left ventricular 

dysfunction, the presence or absence of diabetes and total and HDL-cholesterol levels 

(38). Using some or all of these factors, individual CHD risk can be derived. This can 
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then  be contrasted with calculated threshold probabilities to guide us in  subsequent 

actions (e.g. observe vs. treatment vs. testing). 

 Discussion 

 Evidence-based movement has been particularly successful to highlight the fact 

that "not all evidence is created equal" (39) and that some evidence is closer to the truth 

than others. Hence, in the hierarchy of evidence related to the treatment, the high-

power randomized trials and/or meta-analysis based on individual patient data is 

considered more valid evidence than the one collected in non-randomized trials or in 

anecdotal fashion (5, 40, 41). However, as stressed here, understanding the quality of 

evidence alone is not sufficient for effective clinical decision making.  

 The integration of evidence about the beneficial and harmful effects of alternative 

management strategies within a decision analytic model may improve clinical decision-

making. This fact has been recently acknowledged by the Evidence-based Medicine 

Working Group of the Cochrane Collaboration (8). This group also developed a method 

for determining the threshold NNT to facilitate treatment recommendations for specific 

patients groups (8). This method, which also includes patients' preferences, is a special 

case of the model applicable to clinical situations when the diagnosis is certain (17, 20, 

24). One should note that use of relative patients' values developed and recommended 

by the Evidence-based Medicine Working Group of the Cochrane Collaboration (8), and 

integrated in our model, is not equivalent to preference elicitation using standard 

gamble scenarios or time trade-off method commonly advocated in decision-theory 

literature (19). The fact is, however, that these standard methods are time-consuming 

and cumbersome to use, and have not penetrated in every day medical practice despite 
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that they have been developed decades ago. To facilitate effective bedside decision-

making, simpler techniques are needed (42, 43). Development and elicitation patients 

values toward adverse treatment vs. disease effect is one such development (8) that is 

easily adopted within simple decision models presented in this paper. 

 We should also note that Riegelman and Schroth (22) provided several useful 

derivations of "adjusted" NNT that allows for the inclusion of multiple harms and 

benefits. They also demonstrated how other outcome measures such as life 

expectancy, cost-effectiveness or the results of decision analysis can be expressed 

using the NNT concept (22). Their method closely resembles that of Guyat et al's (8) 

and is also only applicable to a clinical situation when the diagnosis is certain. 

Interestingly, Willan et al.(44) and Schulzer and Mancini (45), using different modeling 

assumptions, derived a relationship between measures of harm and benefit similar to 

our NNT/NNH derivation. Their model is also applicable only to situations when 

diagnosis is absolutely certain. None of the works cited, however, attempted to relate 

measures of benefit and harm to practical action thresholds or to address the issue of 

diagnostic testing (22, 37, 44, 45). While, on the surface, all of these methods are 

different, they all eventually converge in their findings. The model presented here and 

elsewhere [7] using formal decision analysis to integrate EBM therapeutic summary 

measures, in fact, represents a general model within which other models described in 

the literature can be readily accommodated. Despite the power and credibility of the 

approach described, all these methods, including ours, assume a constant reduction in 

relative risk and fixed adverse effects (37). The reader should check these assumptions 

before acting upon results provided by any of these methods. 
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 Furthemore, we want to highlight another important aspect of the work presented 

here, and that is striking dependence of calculation of the results on definition of benefit 

and harms. Different formulations for derivation of action thresholds are obtained when 

benefits and harms are expressed in terms of relative or absolute measures, 

respectively. In our model, NNT relate to the effect of the disease on health outcome 

(for example, treated patients vs. those not-treated, or treated with one therapy vs. 

treated with another therapy) and NNH specifically refers to treatment adverse effects. 

These definitions are directly related to definitions of benefit and harm in the decision 

tree (see Appendix). This distinction between NNT and NNH is often not clear in the 

contemporary usage of these EBM measures. For example, it is customary to denote 

negative NNT as NNH (46). While this notification may be correct, it would require 

change in the definition of benefits and harms (see Appendix), and consequently 

derivation of action threshold may change. 

 Incidentally, we note that people make different decisions when measures of 

benefit and harm are presented to them in different formats (e.g. relative risk reduction 

vs. absolute risk difference vs. NNT)(47-49). It would be interesting to investigate results 

obtained by our normative model with respect to actual physicians' decisions and way 

how information on benefit and harm was presented to them. 

 Conclusions 

 A practical method for the integration of commonly used EBM summary 

measures of therapeutic effect within the context of decision analysis is illustrated in two 

common clinical situations (prophylaxis and treatment comparison) as well as in 

situations when the diagnosis is certain and when it is not. When EBM therapeutic and 
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diagnostic summary measures are linked to decision analysis, some important 

principles of clinical decision making are affirmed e.g., never order a diagnostic test or 

administer treatment if its harm is greater than its relative risk reduction. 

 The above relationships were derived for relatively simple (two choice) clinical 

situations and for the most common EBM treatment measures. More complex 

relationships will arise when faced with multiple diagnostic and therapeutic strategies, 

with multiple outcomes and with other EBM therapeutic summary measures. Although 

the method presented here can be extended to embrace multiple adverse effects that 

may be associated with a given treatment (see Appendix), more complex modeling 

would often be required under these circumstances. In recent years, we have 

increasingly witnessed the use of complex decision models to help with policy-making 

decisions rather than with bedside decisions (50). In doing so, decision-analytic models 

commonly analyze events over or beyond time for which no direct evidence exist and 

use assumptions or data which are of poor quality. For example, there is high-quality 

evidence from randomized trials that bone marrow transplant is superior to conventional 

therapy in the treatment of myeloma at five years (51). However, decision-analytic 

models often continue to simulate and compare two treatment modalities beyond the 

time point at which high-quality evidence exists (52). This results in paradox between 

EBM and decision-analysis: while on one hand EBM measures are inadequate for 

optimal decision-making and require integration within decision-analytic framework, 

paradoxically the high quality evidence can be lost within the decision-analytic model 

that integrates a number of other assumptions based on the low-quality or even non-

existing evidence. The solution, then, may be to integrate EBM measures within a 
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simple model that does not go beyond time point for which (high-quality) empirical data 

exists. This is another reason why our simple model may be used at the bedside 

decision making. Nevertheless, our method is not intended to replace clinical judgement 

but to supplement it. For the class of problems presented here, we believe that these 

methods provide a practical and educational tool to help improve clinical decision-

making.  
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 Appendix: Threshold relationships 

Comparison of an Intervention to No intervention 
 

The analytical solution of the tree in Figure 1 for the treatment of a single disease 

involves multiplication of the outcomes of the tree by its corresponding probabilities and 

solving for the probability of a disease at which we should be indifferent to the two 

strategies (pt). This represents a typical clinical situation with uncertain diagnosis, e.g. 

whether to administer anticoagulants to a patient suspected of pulmonary embolism (17, 

24), or adjuvant chemotherapy in a patient who underwent surgery for breast 

cancer(20). 

The threshold probability of disease or relapse (pt) at which the expected value 

of treatment equals the expected value of no treatment is the solution to the equation: 

 p * [1 – Mrx – H] + (1– p) * [1 – H]  =  p * [1 – M] + (1–p) * [1], 

or  p * [((1 – Mrx – H) – (1 – M)) + (1 – (1 – H))]  =  H  

where [(1 – Mrx – H) – (1 – M)]=M-Mrx-H is the net benefit from treatment in those with 

the disease (outcome in those treated – outcome in those not treated) and [1 – (1 – H)] 

is the net harm from treatment in those without the disease (outcome in those treated – 

outcome in those not treated)(14, 17). The reader should note that net benefit of 

treatment is restricted to patients who have the disease, and net harm applies to those 

patients without the disease (see reference (17) for details). 

As explained in the text, H refers to the harm associated with treatment, and M and MRx 

to morbidity/mortality, without and with treatment, respectively. As illustrated in the text, 

all of these parameters need to be expressed as probabilities on a scale 0 to 1. The 
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difference between M and MRx is equal to absolute risk difference in event rates (ARD) 

(M - MRx = ARD). The analytic derivation of net benefits shown here is equivalent to 

Glasziou’s and Irwig's axiomatic definition of net benefits(37). 

 As discussed in the text, the solution of the tree depends on definition of benefits 

and harms. Our model decomposes utilities into effects of the disease (with or without 

treatment) and the effect of treatment. Therefore, harm [(e.g. NNH=1/(H1-H2)] will relate 

only to the adverse effect of treatment, and benefit (e.g. NNT) to the effect of the 

disease which may or may not be treated [(e.g. NNT=1/(M-Mrx) or 1/(Mrx2-Mrx1)] (see, 

later and the text). 

 It is important to note that our model assumes that Mrx (morbidity/mortality on 

treatment) and Hrx (treatment-related morbidity/mortality) are independent events and 

that the probability of both effect occurring simultaneously (e.g. while on tamoxifen 

patient cannot die of breast cancer and endometrial cancer at the same time) is 

negligible and may be omitted (24). In most cases, the results under these assumptions 

do not significantly differ from the results when these assumptions are not taken into 

account. For details on differences in derivations of the model under different 

assumptions of a condition of independence, the reader is referred to reference (24).  

 Now, from the equations above, we derive the following: 

  pt * [M – Mrx]  =  H 

  pt  =  H / [M – Mrx]  =  H / (E * M) =  H / [Srx – S] =  H / ARD,  

 

where, in those with disease, Srx is the disease-specific survival in those treated and S 
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is the survival in those not treated. Finally, since NNT = 1 / ARD, we have:    

   pt =  H * NNT   

  

 Comparison of an Intervention to placebo   

If we assume that a patient is taking placebo, net harm is equal to  

(1 – Hactive treatment) – (1 – Hplacebo) = Hactive treatment – Hplacebo, and since  

NNH = 1 / ( Hactive treatment – Hplacebo) : 

   pt  =  NNT / NNH 

 

Since pt must be less than or equal to one, it also follows 

   (Htreatment-Hplacebo) * NNT <  1 

or   (Htreatment-Hplacebo)  <  1 / NNT  =  M – Mrx = ARD 

and    NNT  <  NNH 

 Each of these inequalities may have its specific applicability, depending upon the 

type of a clinical situation.  

Comparison of One Treatment with Another   

Following the same steps as illustrated above, the threshold probability of 

disease or relapse (pt) at which the expected value of treatment 1 equals the expected 

value of treatment 2 is shown to be(20): 

pt = (H1 – H2) / ( M * (E1 – E2))  =  (H1 – H2) / (MRx2 – MRx1) 

    = (H1 – H2) / (SRx1 – SRx2) = NNT*(H1-H2) = NNT/NNH 
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where H1 and H2 represent the harm inflicted with treatments 1 and 2 respectively; E1 

and E2 represent the effectiveness of treatments 1 and 2, generally expressed as the 

relative risk reduction; M represents morbidity/mortality without treatment, while MRx1 

and MRx2 represent  morbidity/mortality with treatments 1 and 2, respectively and pt is 

the disease probability representing treatment action threshold. SRx1 and SRx2 refer to 

disease-specific survival with treatment 1 and 2, respectively. This formulation is 

particularly appealing if data are expressed in terms of survival, which is commonly the 

case in oncology practice. Note that in this formulation NNT=1/(Mrx2-Mrx1)=1/(Srx1-

Srx2)=1/ARD, and NNH=1/(H1-H2)=1/AHD. 

 The following inequalities can also be derived from the threshold equations 

above (20): Treatment 1 is favored if either of the following inequalities holds:  

    E1 > E2 + (H1 – H2) / M  

    SRx1 > SRx2 + (H1 – H2)  

 

Choice between withholding treatment, testing or treating without testing 

The text also provides a solution for a choice between withholding treatment, 

treating without testing, or performing a test that will determine the further action(14). 

The analytical solution of this tree provides two probabilities: the probability of a disease 

at which we should be indifferent between testing and withholding treatment (ptt) and the 

probability of a disease at which we should be indifferent between testing and treatment 

(prx).  



 
 32 

The solution of the decision tree in Fig 2 follows the same procedure illustrated 

above. Alternatively, the formulas shown in the text may be derived simply replacing the 

net benefit and net harm in the original Pauker and Kassirer model (14) with the 

evidence-based therapeutic summary measures shown above. 

Integration of patient's preferences within threshold model 

If we assume that a patient may expresses certain value judgements toward 

target events (morbidity/mortality without treatment) (qtarget=1 - value of experiencing 

target event = value of avoiding target event)(8), and adverse events of the treatments 

(qadverse event(AE)=1-value of experiencing adverse event = value of avoiding adverse 

event), the threshold expression for the case of comparing treatment 1 vs treatment 2 

can be defined as: 

p*[1 – qtarget*M*(1-E1)–qAE*H1] + (1– p)*[1 – qAE*H1] = p* [1 – qtarget*M*(1-E2)-qAE*H2] 

+ (1–p) * [1-qAE*H2] 

Solving this equation for p we obtain 

 pt=NNT*[qAE/qtarget*(H1-H2)]=RV*NNT/NNH=NNT*[RV/NNH] 

 

where RV is the relative value of adverse events relative to target events RV=qAE/qtarget 

(8). Note that this expression assumes only one adverse event which is identical in both 

treatments arms, but which may occur at different frequencies (e.g. life-threatening 

bleeding with aspirin vs. warfarin). However, if we assume that a patient may 

experience more than one adverse event (8) (e.g. treatment 1 and 2 can inflict two 

types of adverse events) the above threshold equation can be formulated as: 
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p*[1 – qtarget*M*(1-E1)–qAE1*H1-qAE2*H2] + (1– p)*[1 – qAE1*H1-qAE2*H2] = p* [1 – 

qtarget*M*(1-E2)-qAE1*H3-qAE2*H4] + (1–p) * [1-qAE1*H3-qAE2*H4] 

Again, using same procedure as above, we find the threshold at which the expected 

value of treatment 1 is equal to the expected value of value of treatment 2: 

 pt = NNT * [(RV1*H1 + RV2*H2) - (RV1*H3 + RV2*H4)] 

 = NNT * [RV1*(H1-H3) + RV2*(H2-H4)] = NNT * [RV1/NNH1 + RV2/NNH2] 

 

or, in general form, for n adverse effects, this equation can be expressed as: 

pt = NNT  *[RV1/NNH1 + RV2/NNH2 + RV3/NNH3 +….+ RVn/NNHn] 

The reader is also referred to references (20) and (24) for further technical details 

of derivations shown in this paper.  
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Legends: 

Fig 1. Integration of evidence-based therapeutic summary measures within a decision 

analytic model. Choice between management strategy 1 (treatment 1) vs. management 

strategy 2 with possible clinical events (probabilities) and outcomes (relative values or 

utilities) associated with these events are shown. Management strategy 2 relates to a 

no-treatment strategy, placebo and treatment 2, respectively. For example, in the first 

model if treatment is selected, it can be administered to those patients with or without 

disease. If it is given to the patient with the disease, outcome will be determined by 

effect of treatment on the disease (Mrx) and its adverse effects (H). Note how evidence-

based therapeutic summary measures affect outcomes associated with different 

management strategies and how these effects vary as assumptions of the model vary. 

See Appendix and the text for details on the analytical solution of the decision tree. 

Abbreviations: E-treatment efficacy; Mrx-morbidity/mortality with the treatment; M-

morbidity/mortality without treatment; H or Hrx-harm of the treatment; Hpl-adverse 

effects on placebo; p-the probability of disease. 

Fig 2. Integration of evidence-based therapeutic summary measures within a decision 

analytic model. In this clinical situation, the choice is between administering treatment, 

performing a diagnostic test and withholding therapy. Abbreviations: E-treatment 

efficacy; Mrx-morbidity/mortality with the treatment; M-morbidity/mortality without 

treatment; Hrx-harm of the treatment; Hte-harm associated with performing a diagnostic 

test; Sp-test specificity; S-test sensitivity; p-the probability of disease (see Appendix, Fig 

1 and the text for details). Adapted from Pauker and Kasirer (14) 
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